Processing math: 72%

📈📉 비즈니스 어낼리틱스/🕑 시계열 분석 13

🕑시계열 데이터 분석 13 - 자기상관 해결 5. 자기상관오차회귀모형

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 오차의 자기상관 해결 05. 자기상관오차회귀모형 🕑 오차의 자기상관 해결방법 1. 변수변환 & 회귀분석 2. 회귀 가변수를 이용한 회귀모형 3. 시계열 모형 : 선형회귀모형의 형태 : 시간이 다른 변수값(과거값)을 사용한다는 점에서 다름 • 자기회귀모형 (Autoregressive, AR model) - y 변수를 과거의 y값으로 적합. . • 자기회귀시차분포모형 (Autoregressive Distributed Lag –ARDL) - y변수를 x변수와 과거의 x값, 과거의 y값으로 적합. • 자기상관오차회귀모형 (Regression model with autoregressive error) -..

🕑시계열 데이터 분석 12 - 자기상관 해결 4. 자기회귀시차분포모형(ARDL Model)

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 오차의 자기상관 해결 04. ARDL 모델 : 자기회귀시차분포모형 🕑 오차의 자기상관 해결방법 1. 변수변환 & 회귀분석 2. 회귀 가변수를 이용한 회귀모형 3. 시계열 모형 : 선형회귀모형의 형태 : 시간이 다른 변수값(과거값)을 사용한다는 점에서 다름 • 자기회귀모형 (Autoregressive, AR model) - y 변수를 과거의 y값으로 적합. . • 자기회귀시차분포모형 (Autoregressive Distributed Lag –ARDL) - y변수를 x변수와 과거의 x값, 과거의 y값으로 적합. • 자기상관오차회귀모형 (Regression model with autoregressiv..

🕑시계열데이터 분석 11 - 자기상관 해결 3. 자기회귀모형 (AR Model)

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 오차의 자기상관 해결 03. AR 모델 : 자기회귀모형 🕑 오차의 자기상관 해결방법 1. 변수변환 & 회귀분석 2. 회귀 가변수를 이용한 회귀모형 3. 시계열 모형 : 선형회귀모형의 형태 : 시간이 다른 변수값(과거값)을 사용한다는 점에서 다름 • 자기회귀모형 (Autoregressive, AR model) - y 변수를 과거의 y값으로 적합. . • 자기회귀시차분포모형 (Autoregressive Distributed Lag –ARDL) - y변수를 x변수와 과거의 x값, 과거의 y값으로 적합. • 자기상관오차회귀모형 (Regression model with autoregressive erro..

🕑시계열데이터 분석 10 - 자기상관 해결 2. 회귀가변수

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 오차의 자기상관 해결 02. 회귀가변수 추가 🕑 1. 트렌드 (trend) 1차 자기상관이 심하게 있는 경우 고려해 줘야 하는 사안입니다. 다만 X변수에도 trend가 있기 때문에 회귀모형 적합 결과 오차항에는 trend가 남지 않을 수도 있습니다. 하지만 오차항에 trend 자기상관이 남아있다면, trend에 해당하는 가변수를 X변수로 추가 가능합니다. 트렌드 가변수로는 시간 가변수 𝑡 또는 𝑡2 를 사용합니다. 🕑 트렌드 파악 우선 데이터에서 각 feature의 plot을 그려 트렌드 유무를 파악합니다. df1 |t|) (Intercept) 0.6640849 0.3513251..

🕑시계열데이터 분석 09 - 자기상관 해결 1. 차분

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 오차의 자기상관 해결 01. 차분 🚩 선형회귀 모델의 타당성을 파악하기 위해서, 모집단 모형에는 8가지 가정이 존재합니다. 가정1 : 변수 YX의 관계는 선형이다. scatter plot으로 검증. 가정2 : X는 확률변수가 아닌 주어진 상수값이다. Cross sectional data에서는 그냥 받아들이지만, 시계열데이터에서는 고려. 가정3 : X값이 주어져 있을 때, 오차항의 평균은 0이다. E(εi|X)=0 즉, X값이 주어져 있을 때 Y의 평균은 체계적인 부분. 잔차플롯으로 검증. 전반적인 잔차가 0에 모여있는지 확인. 가정4 : X값이 주어졌을 때, 오차항의 분..

🕑시계열데이터 분석 08 - 시계열 회귀분석

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 시계열 회귀분석 서로 다른 개체 간 오차항들은 서로 자기상관이 없다는 가정의 영향을 고려해줘야 합니다. 특히 시계열 데이터의 특성 상, 각 개체 간 자기상관이 없을 수 없기 때문에 꼭 이에 대한 처리를 해주어야 합니다. 대표적으로, 차분을 진행해서 자기상관을 줄이는 방법이 있겠습니다. 🕑 선형회귀 : lm(Y ~ X1 + X2 + X3, data = DATA) 🕑 먼저, 일반 데이터프레임에 대해 회귀분석을 진행하겠습니다. ## 데이터프레임 head(df1) ## year consumption income wealth interest lnconsump lndpi lnwealth ## 1 1947 ..

🕑시계열데이터 분석 07 - 평활기법

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 평활기법 (Smoothing) 평활기법은 대부분 prediction 혹은 projection을 위한 방법입니다. 만약 계절성이 있는 데이터라면, 반드시 계절성을 제거한 다음 진행해야합니다. 🕑 1. 선형평활 - naive : naive(TS_DATA) 가장 최근 값을 사용해서 예측하는 방법입니다. setwd("C:\\Users\\yamingu\\Desktop\\고급비즈니스어낼리틱스") oil.df=read.csv("[Ch1.시계열자료준비시계열분해]_files\\BOK_energy_oil.csv") oil.ts=ts(oil.df$oil, start=c(1994,1), frequency=12) ##..

🕑시계열데이터 분석 06 - 시계열 데이터 분해

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 시계열 분해 시계열 분석 모형의 선택은 Y 변수와 그와 관련있는 다른 변수의 유무에 의해 정해집니다. 🕑 시계열자료의 구성 및 요인 추세요인(trend factor) : 장기변동 / 기술의 변화, 인플레이션 / 전반적인 움직임 순환요인(cycle factor) : 중기변동 / 경기순환주기 / 몇년 단위 반복 움직임 / 파악 어려움 / 계절성 잡은 후 잡기 가능 계절요인(seasonal factor) : 1년 주기로 발생하는 단기변동 불규칙요인(irregular factor) : 측정 및 예측이 어려운 오차변동 / 시계열을 위 세 가지 요인으로 설명하고 남은 변동 • 보통, 주어진 시계열을 추세(..

🕑시계열데이터 분석 05 - aggregate( ) 함수

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 aggregate( ) 월별 / 분기별 / 년도별 데이터가 있다면, 큰 주기에 맞춰서 각 데이터의 주기를 맞춰줘야 합니다. 큰 주기의 데이터를 작은 주기로 넣으려면 없는 데이터를 만들어서 넣어야 하기에 가정과 추가적인 모델링이 필요한 경우가 있습니다. 하지만 이 경우, 데이터의 크기가 작아져 몇 가지 문제가 생길 수 있습니다. 어쨌든, 각 데이터의 주기를 맞춰주어야 시계열 분석에 용이하고, 여러 데이터를 하나의 시간 축에 대해서 분석하는 것이 가능해지기 때문에, R에서는 이러한 기능을 수행하는 함수를 제공합니다. 원래 주기가 12짜리 월별 데이터인 AirPassengers 에 aggregate ..

🕑 시계열 데이터 분석 04 - 시계열 데이터 plot

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🕑 데이터 선언 unemploy.df=read.csv("BOK_unemployment_rate.csv") oil.df=read.csv("BOK_energy_oil.csv") exchange.df=read.csv("BOK_exchange_rate_krw_usd.csv") unemploy.ts=ts(unemploy.dfunemployment_rate, start=2000, frequency=1) oil.ts=ts(oil.dfoil, start=c(1994,1), frequency=12) exchange.ts=ts(exchange.df$exchange_rate_krw_usd, start=c(1980,..