파이토치 2

🧠 EEG 뇌전증 분석 LSTM 05. Inference

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 새로운 데이터에 학습시킨 모델을 적용하기 위해서는 모델이 학습한 파라미터들을 기억하고 있어야 합니다. 이렇게 기억한 파라미터를 모델에 적용시켜 새로운 데이터의 calss를 예측하는 과정을 inference 라고 하는데, 이번 포스팅에서는 파이토치에서 이를 구현하는 과정을 다루도록 하겠습니다. 🏆 01. Inference를 위한 파라미터 파일 생성 🚩 파이토치 홈페이지의 공식 튜토리얼을 참고했습니다. 🚩 파이토치 Inference 튜토리얼 # 파라미터 저장 경로 설정 PATH_param = "C:\\Users\\mingu\\Desktop\\state_dict_model.pt" # 파라미터 저장 tor..

🧠 EEG 뇌전증 분석 LSTM 03. 모델 정의 학습

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🚩 저번 포스팅에서는 데이터를 전처리하는 과정을 다루었습니다. 예측할 label은 0,1,2 의 3가지 종류입니다. 🚩 이번 포스팅에서는 필요한 부분을 가져오는 data_iter 함수 와 LSTM 모델 을 정의하고 학습하는 부분까지 다루겠습니다. 만들고자 하는 모델은 사용자의 EEG sequence를 넣었을때 그 사람이 어떤 상태(간질발작-0, 종양-1, 건강-2)에 놓여있는지를 파악하는 모델입니다. 측정을 위한 전극의 위치나 개수를 고려하여 이미 한번 셔플한 데이터였지만, 보다 랜덤한 표본을 통해 모델을 학습시키기 위해서 임의의 랜덤한 부분에서 120개의 신호를 가져올 수 있도록 data_iter..