ADAM 2

🧠 EEG 뇌전증 분석 LSTM 03. 모델 정의 학습

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🚩 저번 포스팅에서는 데이터를 전처리하는 과정을 다루었습니다. 예측할 label은 0,1,2 의 3가지 종류입니다. 🚩 이번 포스팅에서는 필요한 부분을 가져오는 data_iter 함수 와 LSTM 모델 을 정의하고 학습하는 부분까지 다루겠습니다. 만들고자 하는 모델은 사용자의 EEG sequence를 넣었을때 그 사람이 어떤 상태(간질발작-0, 종양-1, 건강-2)에 놓여있는지를 파악하는 모델입니다. 측정을 위한 전극의 위치나 개수를 고려하여 이미 한번 셔플한 데이터였지만, 보다 랜덤한 표본을 통해 모델을 학습시키기 위해서 임의의 랜덤한 부분에서 120개의 신호를 가져올 수 있도록 data_iter..

🧠 EEG 뇌전증 분석 LSTM 01. readme

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🏆 LSTM을 사용한 EEG 데이터 딥러닝 프로젝트 EEG란 두피에 전극을 부착해 뇌의 미세한 전기활동을 증폭해 파동을 기록하는 검사입니다. 흔히 말하는 뇌파가 이 검사로부터 나오는 결과를 의미합니다. 뇌파검사는 현재 질병진단, 의학교육, 치료목적 등으로 연구 중입니다. 특히 ADHD, 자폐증, 우울증, 뇌종양 등 여러가지 정신질환과 중추신경계질환 진단에 도움을 줄 수 있습니다. 이러한 배경을 바탕으로 EEG 결과를 분석해 간단한 검사만으로 질환을 예측하는 모델을 만듦으로써 많은 사람들이 가질 수 있는 위험성을 사전에 방지하고자 합니다. 🏆 주제 선정 배경 📌 간질(epilepsy, 뇌전증)은 두통..