Decision Tree 2

🫀 심혈관질환 데이터 분석 14. 결정트리 시각화

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🩸 저번 글에서는 결정 트리를 통해 Classification을 진행했습니다. correlation 분석으로 얻어진 4개의 attribute set과 PCA dataframe에 대해 예측력을 평가했습니다. 이번 글에서는 앞서 얻은 결정 트리 모델을 시각화해볼 것입니다. 🫀 1. 라이브러리 📌 결정트리를 위한 graphviz 라이브러리 를 사용합니다. 처음 설치할 때 바이너리 코드의 경로를 잘 설정해줘야합니다. 데이터의 크기가 크지 않은 경우에는 만들어진 결정 트리를 살펴보기 어렵지 않지만, 본 프로젝트에 사용한 데이터는 column이 많기에 한번에 파악하기 어렵습니다. 따라서 이렇게 만들어진 결정 ..

🫀 심혈관질환 데이터 분석 13. 결정트리 구현

모바일은 화면을 돌려 가로화면으로 보시는 게 읽으시기 편할 수 있습니다. 돌려서 보시는 걸 추천드릴게요!! 🩸 저번 글에 이어 이번 글에서는 Decisioin Tree를 통해 각 데이터프레임의 accuracy를 비교해봅시다. 🩸 먼저 사용할 데이터를 확인하겠습니다. 📌 전처리한 데이터 📌 PCA 데이터프레임 🫀 1. Original Data 🩸 먼저 가져온 데이터의 target을 범주형으로 변경해봅시다. cardio.target_rand = cardio['cardio'].copy() cardio.target_rand[cardio.target_rand==0] = 'N' cardio.target_rand[cardio.target_rand==1] = 'Y' 🩸 이제 앞선 연관관계 분석에서 추출한 attribu..